Thursday, 2 November 2017

Usos Del Promedio Móvil En Series De Tiempo


¿Qué es un promedio móvil? El primer promedio móvil es 4310, que es el valor de la primera observación. El siguiente promedio móvil es el promedio de las dos primeras observaciones, (4310 4400) / 2 4355. La tercera media móvil es el promedio de las dos primeras observaciones, El promedio de la observación 2 y 3, (4400 4000) / 2 4200, y así sucesivamente. Si desea utilizar un promedio móvil de longitud 3, se promedian tres valores en lugar de dos. Copyright 2016 Minitab Inc. Todos los derechos reservados. Al utilizar este sitio, usted acepta el uso de cookies para análisis y contenido personalizado. En nuestra segunda columna de esta tabla se muestra una media móvil de orden 5 que proporciona una estimación del ciclo de tendencias. El primer valor en esta columna es el promedio de las cinco primeras observaciones (1989-1993), el segundo valor en la columna 5-MA es el promedio de los valores 1990-1994 y así sucesivamente. Cada valor en la columna 5-MA es el promedio de las observaciones en el período de cinco años centrado en el año correspondiente. No hay valores para los dos primeros años o los últimos dos años porque no tenemos dos observaciones a cada lado. En la fórmula anterior, la columna 5-MA contiene los valores de hat con k2. Para ver cómo se ve la estimación de tendencia-ciclo, lo trazamos junto con los datos originales en la Figura 6.7. Parcela 40 elecsales, principal quotResidential ventas de electricidad, ylab quotGWhquot. Observe cómo la tendencia (en rojo) es más suave que los datos originales y captura el movimiento principal de la serie temporal sin todas las fluctuaciones menores. El método del promedio móvil no permite estimaciones de T donde t está cerca de los extremos de la serie, por lo tanto la línea roja no se extiende a los bordes de la gráfica en cualquier lado. Posteriormente utilizaremos métodos más sofisticados de estimación de tendencia-ciclo que permiten estimaciones cerca de los puntos finales. El orden de la media móvil determina la suavidad de la estimación de tendencia-ciclo. En general, una orden más grande significa una curva más lisa. El siguiente gráfico muestra el efecto de cambiar el orden de la media móvil para los datos de ventas de electricidad residencial. Esto es así que son simétricos: en una media móvil de orden m2k1, hay k observaciones anteriores, k observaciones posteriores y la observación media Que se promedian. Pero si m era igual, ya no sería simétrico. Promedios móviles de promedios móviles Es posible aplicar una media móvil a una media móvil. Una de las razones para hacer esto es hacer una media móvil de orden uniforme simétrica. Por ejemplo, podríamos tomar una media móvil de orden 4, y luego aplicar otra media móvil de orden 2 a los resultados. En la Tabla 6.2, esto se ha hecho para los primeros años de los datos trimestrales australianos sobre la producción de cerveza. Beer2 lt - window 40 ausbeer, inicio 1992 41 ma4 ltm 40 beer2, order 4. center FALSO 41 ma2x4 ltm 40 cerveza2, orden 4. center TRUE 41 La notación 2times4-MA en la última columna significa un 4-MA Seguido por un 2-MA. Los valores de la última columna se obtienen tomando una media móvil de orden 2 de los valores de la columna anterior. Por ejemplo, los dos primeros valores en la columna 4-MA son 451,2 (443410420532) / 4 y 448,8 (410420532433) / 4. El primer valor en la columna 2times4-MA es el promedio de estos dos: 450.0 (451.2448.8) / 2. Cuando un 2-MA sigue una media móvil de orden par (como 4), se llama una media móvil centrada de orden 4. Esto se debe a que los resultados son ahora simétricos. Para ver que este es el caso, podemos escribir el 2times4-MA de la siguiente manera: begin hat amp frac Bigfrac (y y y y) frac (y y y y) Big frac fray frac14y frac14y frac14y frac18y. Final Es ahora un promedio ponderado de observaciones, pero es simétrico. También son posibles otras combinaciones de promedios móviles. Por ejemplo, a menudo se utiliza una MA 3 x 3 y consiste en una media móvil de orden 3 seguida por otra media móvil de orden 3. En general, un orden par MA debe ir seguido de un orden par MA para hacerlo simétrico. Similarmente, un orden impar MA debe ser seguido por un orden impar MA. Estimación del ciclo de tendencias con datos estacionales El uso más común de promedios móviles centrados consiste en estimar el ciclo de tendencias a partir de datos estacionales. Considere el caso 2 x 4-MA: fractura de sombrero frac14y frac14y frac14y frac18y. Cuando se aplica a los datos trimestrales, cada trimestre del año se le da el mismo peso como el primer y último términos se aplican al mismo trimestre en años consecutivos. En consecuencia, se promediará la variación estacional y los valores resultantes del sombrero t tendrán poca o ninguna variación estacional restante. Se obtendría un efecto similar usando una 2-8 MA o una 2-12 MA. En general, una m-MA de 2 veces es equivalente a una media móvil ponderada de orden m1 con todas las observaciones tomando peso 1 / m excepto para el primer y último término que toman pesos 1 / (2m). Por lo tanto, si el período estacional es uniforme y de orden m, utilice una m-MA de 2 veces para estimar el ciclo de tendencia. Si el período estacional es impar y de orden m, use un m-MA para estimar el ciclo de tendencias. En particular, se puede usar un 2-12 MA para estimar el ciclo de tendencias de los datos mensuales y un 7-MA se puede utilizar para estimar el ciclo de tendencias de los datos diarios. Otras opciones para el orden de la MA por lo general resultarán en estimaciones de tendencia-ciclo que están contaminadas por la estacionalidad en los datos. Ejemplo 6.2 Fabricación de equipos eléctricos La Figura 6.9 muestra una aplicación de 2 x 12 mA aplicada al índice de pedidos de equipos eléctricos. Obsérvese que la línea lisa no muestra estacionalidad, es casi la misma que la tendencia-ciclo que se muestra en la Figura 6.2 que se estimó usando un método mucho más sofisticado que los promedios móviles. Cualquier otra opción para el orden de la media móvil (excepto 24, 36, etc.) habría resultado en una línea suave que muestra algunas fluctuaciones estacionales. Plot 40 elecequip, ylab quotNuevo índice de órdenes. Col quotgrayquot, main Quot 41, 40 ma 40 elecequip, order 12 41. col quotredquot 41 Promedios móviles ponderados Las combinaciones de promedios móviles resultan en promedios móviles ponderados. Por ejemplo, el 2x4-MA discutido anteriormente es equivalente a un 5-MA ponderado con pesos dados por frac, frac, frac, frac, frac. En general, una m-MA ponderada se puede escribir como hat t sum k aj y, donde k (m-1) / 2 y los pesos están dados por a, dots, ak. Es importante que los pesos se suman a uno y que sean simétricos de modo que aj a. El m-MA simple es un caso especial donde todos los pesos son iguales a 1 / m. Una ventaja importante de las medias móviles ponderadas es que producen una estimación más suave del ciclo de tendencias. En lugar de las observaciones que entran y salen del cálculo a peso completo, sus pesos aumentan lentamente y luego disminuyen lentamente, dando como resultado una curva más lisa. Algunos conjuntos específicos de pesos son ampliamente utilizados. Algunos de ellos se dan en la Tabla 6. 3. Promedios de movimiento Promedios de movimiento Con conjuntos de datos convencionales, el valor medio es a menudo el primero, y uno de los más útiles, las estadísticas de resumen para calcular. Cuando los datos están en forma de series temporales, la media de la serie es una medida útil, pero no refleja la naturaleza dinámica de los datos. Los valores medios calculados en periodos de cortocircuito, ya sea antes del período actual o centrados en el período actual, suelen ser más útiles. Debido a que tales valores medios variarán o se moverán, a medida que el periodo actual se desplaza desde el tiempo t2, t3, etc., se conocen como medias móviles (Mas). Un promedio móvil simple es (típicamente) el promedio no ponderado de k valores previos. Una media móvil exponencialmente ponderada es esencialmente la misma que una media móvil simple, pero con contribuciones a la media ponderada por su proximidad al tiempo actual. Debido a que no hay una, sino toda una serie de promedios móviles para cualquier serie dada, el conjunto de Mas puede ser trazado en gráficos, analizado como una serie, y utilizado en el modelado y la predicción. Una gama de modelos puede ser construida usando medias móviles, y éstos se conocen como modelos del MA. Si estos modelos se combinan con modelos autorregresivos (AR), los modelos compuestos resultantes se conocen como modelos ARMA o ARIMA (el I es para integrado). Promedios móviles simples Puesto que una serie temporal puede considerarse como un conjunto de valores, t 1,2,3,4, n se puede calcular el promedio de estos valores. Si asumimos que n es bastante grande, y seleccionamos un entero k que es mucho menor que n. Podemos calcular un conjunto de promedios de bloques, o medias móviles simples (de orden k): Cada medida representa el promedio de los valores de datos sobre un intervalo de k observaciones. Obsérvese que la primera MA posible de orden k gt0 es que para t k. De forma más general, podemos eliminar el subíndice extra en las expresiones anteriores y escribir: Esto indica que la media estimada en el tiempo t es el promedio simple del valor observado en el tiempo t y los pasos de tiempo anteriores k -1. Si se aplican pesos que disminuyen la contribución de las observaciones que están más lejos en el tiempo, se dice que el promedio móvil se alisa exponencialmente. Los promedios móviles se usan a menudo como una forma de pronóstico, por lo que el valor estimado para una serie en el tiempo t 1, S t1. Se toma como la MA para el período hasta e incluyendo el tiempo t. p. ej. La estimación de hoy se basa en un promedio de valores anteriores registrados hasta e incluyendo ayer (para datos diarios). Los promedios móviles simples pueden ser vistos como una forma de suavizado. En el ejemplo ilustrado a continuación, el conjunto de datos sobre contaminación atmosférica que se muestra en la introducción a este tema se ha aumentado con una línea de 7 días de media móvil (MA), que se muestra aquí en rojo. Como se puede ver, la línea de MA suaviza los picos y valles en los datos y puede ser muy útil para identificar las tendencias. La fórmula estándar de cálculo de forward significa que los primeros k -1 puntos de datos no tienen ningún valor MA, pero a partir de entonces los cálculos se extienden hasta el punto final de datos de la serie. Una razón para calcular promedios móviles simples de la manera descrita es que permite calcular los valores para todos los intervalos de tiempo desde el tiempo tk hasta el presente, y A medida que se obtiene una nueva medición para el tiempo t1, la MA para el tiempo t1 se puede añadir al conjunto ya calculado. Esto proporciona un procedimiento sencillo para conjuntos de datos dinámicos. Sin embargo, hay algunos problemas con este enfoque. Es razonable argumentar que el valor medio en los últimos 3 períodos, digamos, debería estar situado en el tiempo t -1, no en el tiempo t. Y para una MA sobre un número par de períodos tal vez debería estar situado en el punto medio entre dos intervalos de tiempo. Una solución a este problema es usar cálculos de MA centrados, en los que la MA en el tiempo t es la media de un conjunto simétrico de valores alrededor de t. A pesar de sus méritos evidentes, este enfoque no se utiliza generalmente porque requiere que los datos estén disponibles para eventos futuros, lo que puede no ser el caso. En casos donde el análisis es enteramente de una serie existente, el uso de Mas centrado puede ser preferible. Los promedios móviles simples pueden considerarse como una forma de suavizado, eliminando algunos componentes de alta frecuencia de una serie temporal y destacando (pero no eliminando) las tendencias de manera similar a la noción general de filtrado digital. De hecho, las medias móviles son una forma de filtro lineal. Es posible aplicar un cálculo del promedio móvil a una serie que ya ha sido suavizada, es decir, suavizar o filtrar una serie ya suavizada. Por ejemplo, con un promedio móvil de orden 2, podemos considerar que se calcula usando pesos, por lo que la MA en x 2 0,5 x 1 0,5 x 2. Igualmente, la MA en x 3 0,5 x 2 0,5 x 3. Si Aplicar un segundo nivel de suavizado o filtrado, tenemos 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3 es decir, el filtro de 2 etapas Proceso (o convolución) ha producido una media móvil simétrica ponderada variablemente, con pesos. Las convoluciones múltiples pueden producir promedios móviles ponderados bastante complejos, algunos de los cuales se han encontrado de uso particular en campos especializados, como en los cálculos del seguro de vida. Medias móviles se pueden utilizar para eliminar los efectos periódicos si se calcula con la longitud de la periodicidad como un conocido. Por ejemplo, con datos mensuales, las variaciones estacionales pueden ser eliminadas (si este es el objetivo) aplicando una media móvil simétrica de 12 meses con todos los meses ponderados igualmente, excepto el primero y el último que se ponderan en 1/2. Esto es porque habrá 13 meses en el modelo simétrico (tiempo actual, t. / - 6 meses). El total se divide por 12. Se pueden adoptar procedimientos similares para cualquier periodicidad bien definida. Promedios móviles ponderados exponencialmente (EWMA) Con la fórmula del promedio móvil simple: todas las observaciones son igualmente ponderadas. Si llamamos a estos pesos iguales, alfa t. Cada uno de los k pesos sería igual a 1 / k. Por lo que la suma de los pesos sería 1, y la fórmula sería: Ya hemos visto que las aplicaciones múltiples de este proceso resultan en los pesos que varían. Con las medias móviles ponderadas exponencialmente se reduce la contribución al valor medio de las observaciones que se eliminan más en el tiempo, haciendo hincapié en los acontecimientos más recientes (locales). Esencialmente se introduce un parámetro de suavizado, 0lt alfa lt1, y la fórmula se revisa a: Una versión simétrica de esta fórmula sería de la forma: Si los pesos en el modelo simétrico son seleccionados como los términos de los términos de la expansión binomial, (1/21/2) 2q. Se sumarán a 1, y cuando q se haga grande, se aproximará a la distribución Normal. Esta es una forma de peso del núcleo, con el binomio actuando como la función del núcleo. La convolución de dos etapas descrita en la subsección anterior es precisamente esta disposición, con q1, dando los pesos. En el suavizado exponencial es necesario utilizar un conjunto de pesos que suman a 1 y que se reducen en tamaño geométricamente. Los pesos utilizados son típicamente de la forma: Para mostrar que estos pesos suman a 1, considere la expansión de 1 / como una serie. Podemos escribir y expandir la expresión entre paréntesis usando la fórmula binomial (1-x) p. Donde x (1-) y p -1, lo que da: Esto proporciona entonces una forma de media móvil ponderada de la forma: Esta suma puede escribirse como una relación de recurrencia: lo que simplifica enormemente el cálculo y evita el problema de que el régimen de ponderación Debe ser estrictamente infinito para que los pesos sumen a 1 (para valores pequeños de alfa, esto no suele ser el caso). La notación utilizada por diferentes autores varía. Algunos usan la letra S para indicar que la fórmula es esencialmente una variable suavizada y escriben: mientras que la literatura de la teoría de control usualmente usa Z en lugar de S para los valores exponencialmente ponderados o suavizados (véase, por ejemplo, Lucas y Saccucci, 1990, LUC1 , Y el sitio web del NIST para más detalles y ejemplos trabajados). Las fórmulas citadas anteriormente derivan del trabajo de Roberts (1959, ROB1), pero Hunter (1986, HUN1) utiliza una expresión de la forma: que puede ser más apropiada para su uso en algunos procedimientos de control. Con alfa 1, la estimación media es simplemente su valor medido (o el valor del elemento de datos anterior). Con 0.5 la estimación es el promedio móvil simple de las mediciones actuales y anteriores. En los modelos de predicción el valor, S t. Se utiliza a menudo como estimación o valor de pronóstico para el siguiente período de tiempo, es decir, como la estimación de x en el tiempo t 1. Así, tenemos: Esto muestra que el valor pronosticado en el tiempo t 1 es una combinación de la media móvil ponderada exponencial anterior Más un componente que representa el error de predicción ponderado, epsilon. En el tiempo t. Suponiendo que se da una serie de tiempo y se requiere una predicción, se requiere un valor para alfa. Esto puede estimarse a partir de los datos existentes mediante la evaluación de la suma de los errores de predicción al cuadrado obtenidos con valores variables de alfa para cada t 2,3. Estableciendo la primera estimación como el primer valor de datos observado, x 1. En aplicaciones de control, el valor de alfa es importante porque se usa en la determinación de los límites de control superior e inferior y afecta a la longitud de ejecución media (ARL) esperada Antes de que estos límites de control se rompen (bajo el supuesto de que las series temporales representan un conjunto de variables independientes aleatorias, distribuidas de forma idéntica con varianza común). En estas circunstancias, la varianza de la estadística de control es (Lucas y Saccucci, 1990): Los límites de control se establecen usualmente como múltiplos fijos de esta varianza asintótica, p. / - 3 veces la desviación estándar. Si alfa 0.25, por ejemplo, y se supone que los datos que se están supervisando tienen una distribución Normal, N (0,1), cuando están en control, los límites de control serán / - 1.134 y el proceso alcanzará uno u otro límite en 500 Pasos en promedio. Lucas y Saccucci (1990 LUC1) derivan los ARLs para una amplia gama de valores alfa y bajo diversas suposiciones usando procedimientos de cadena de Markov. Ellos tabulan los resultados, incluyendo el suministro de ARLs cuando la media del proceso de control ha sido desplazada por un múltiplo de la desviación estándar. Por ejemplo, con un cambio de 0.5 con alfa 0.25 el ARL es menos de 50 pasos de tiempo. Los enfoques descritos anteriormente se conocen como suavizado exponencial simple. Ya que los procedimientos se aplican una vez a la serie temporal y luego los procesos de análisis o control se llevan a cabo en el conjunto de datos suavizado resultante. Si el conjunto de datos incluye una tendencia y / o componentes estacionales, se puede aplicar el suavizado exponencial de dos o tres etapas como un medio para eliminar (modelar explícitamente) estos efectos (véase más adelante la sección sobre Pronóstico y el ejemplo trabajado del NIST ). CHA1 Chatfield C (1975) El Análisis de la Serie de Tiempos: Teoría y Práctica. Chapman y Hall, Londres HUN1 Hunter J S (1986) La media móvil exponencialmente ponderada. J of Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Esquemas de control del promedio móvil ponderado exponencialmente: Propiedades y mejoras. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Pruebas de gráficos de control basadas en medias móviles geométricas. Technometrics, 1, 239-250

No comments:

Post a Comment